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We introduce a probability model for gene regulatory networks, based on a system of Chapman-Kolmogorov
equations that represent the dynamics of the concentration levels of each agent in the network. This unifying
approach includes the representation of excitatory and inhibitory interactions between agents, second-order
interactions which allow any two agents to jointly act on other agents, and Boolean dependencies between
agents. The probability model represents the concentration or quantity of each agent, and we obtain the
equilibrium solution for the joint probability distribution of each of the concentrations. The result is an exact
solution in “product form,” where the joint equilibrium probability distribution of the concentration for each
gene is the product of the marginal distribution for each of the concentrations. The analysis we present yields
the probability distribution of the concentration or quantity of all of the agents in a network that includes both
logical dependencies and excitatory-inhibitory relationships between agents.
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I. GENE REGULATORY NETWORKS

Kaufman �1� pioneered models of gene regulatory net-
works �2� that have been extended �3,4� in order to include
logical dependencies between agents �5–8�, as well as sto-
chastic dynamics �9–11�.

In this paper we develop a unifying approach to model the
noisy behavior of regulatory networks that includes �i� exci-
tatory and �ii� inhibitory interactions between agents, and
�iii� second-order interactions which allow any two agents to
jointly act on other agents. We also show that Boolean de-
pendencies between agents can be modeled with our ap-
proach by using second-order interactions.

The model studied in this paper represents the concentra-
tion levels or quantity of each agent in the network. All tran-
sitions in the model are probabilistic. Time is represented via
random transition times whose average value depends on
which agents are involved in each transition. The work in
�12,13� is a precursor of the approach that we develop here.
The present paper extends our prior work on G networks
�14,15�, so as to compute the probability of activation of the
agents in the presence of complex interactions.

The model in this paper differs from probabilistic Boolean
networks �10� in that we propose an integer valued concen-
tration level for each agent i, denoted by Ki�t�, and we study
the stochastic dynamical behavior of the vector K�t� whose
elements are the Ki�t�, with the probability distribution
P�k , t�= P�K�t�=k�. On the other hand, we define a mapping
of the variables Ki�t� into binary variables Bi�t� such that
Bi�t�=1 if Ki�t��0, and Bi�t�=0 if Ki�t�=0, and also com-
pute the steady-state probabilities of the Bi�t� from the cor-
responding distribution for the P�k , t�. However, we do not
deal directly with the dynamics of the vector B�t� whose
elements are the Bi�t�. In our model K�t� is a Markov chain
in continuous time, but B�t� is not a Markov chain.

In �16� a deterministic population model is considered; it
uses nonlinear ordinary differential equations �Eq. �1� in

�16�� to represent the concentration or quantity of different
genes. The approach in �16� is similar to the use of the gen-
eral mass equations �GMA� of chemistry, and variability due
to biology and measurement noise is represented in �16� by
modifying the parameter values in the data sets. Our ap-
proach uses a probabilistic model similar to the chemical
master equations �CME� of chemistry, and noise is intrinsi-
cally part of the model. In chemistry, the GMA are a “mac-
roscopic” deterministic approximation of the “microscopic”
probabilistic representation provided by the CME. The work
of Ribeiro et al. �11� also considers the latter approach, and
in �11� the system is analyzed using Monte Carlo simula-
tions, while our work pursues an analytic approach. Also,
�11� describes the logical dependencies between agents via
rate equations, while here we present both the probabilistic
CME and derive explicit Boolean dependencies between
these equations.

Since practical measurements with microarrays will deal
with large populations of cells each of whose individual in-
stantaneous behavior may not be synchronized, in �17� the
effect of the variation in the number of cells which have a
given gene expression at a given measurement instant is
studied; signal processing techniques are used to derive the
correct gene expression for cyclic gene expression from a
large number of cells with specific reference to a single gene.
This paper presents a model based on a single cell and mul-
tiple agents, and includes the time-dependent probabilistic
dynamics as presented in the differential equation �5�.

II. REGULATORY NETWORKS AND G NETWORKS

We will first begin by presenting the model that we pro-
pose, which is based on G networks �14,18,15,19�, which are
probabilistic dynamical models with an unbounded discrete
state space, operating in continuous time. The model is com-
posed of the following:

�i� Agents, which are the primary objects of interest; they
represent genes or other active biochemical or living objects
whose levels of activity we wish to represent.

�ii� Gates, which represent the interactions between*e.gelenbe@imperial.ac.uk
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agents; gates are either binary in nature �i.e., they describe
the effect of agent i on agent j�, or they are ternary and
describe the joint effect of two agents on a third agent, or
they are multivalued, representing the impact of a set of
agents on a given agent. By chaining sequences of agents
with ternary gates, we obtain joint effects of multiple agents
on a single agent.

We will now set up the probability model for regulatory
networks, and discuss its analytical solution. The probability
model is defined via the following quantities defined for any
agents i , j , l� �1, . . . ,N�:

�i� The Ki�t��0 are integer-valued random variables
which represent the concentration or quantity of the agents i
at time t�0. In the following equations, we assume that any
agent i will be able to interact with other agents as long as
Ki�t� is positive, while it cannot interact with other agents
when Ki�t�=0.

�ii� Each �i�0 is a real number representing the rate at
which agent i is being replenished from some external
source. Furthermore �i�t+o��t� is the probability that in a
time interval �t , t+�t� the variable Ki�t� increases by +1 due
to the replenishment of agent i from an external source. No-
tice that 1 /�i is the average time between increases in Ki�t�
that are caused by external replenishment of the agent.

�iii� Similarly, if Ki�t��0 then the agent may be depleted
and �i�t+o��t� is the probability that in a time inerval �t , t
+�t� the level of Ki�t� will drop by 1, so that �i�0 is the
rate at which agent i is being depleted, provided that agent i
is present in some positive concentration.

�iv� The ri�0 are real numbers representing the activity
rates of each agent i, provided again that the agent is present
in some nonzero amount. Then 1/ri is the average time be-
tween successive interactions of agent i with other agents,
and ri�t+o��t� is the probability that in a time interval
�t , t+�t�, agent i interacts with another agent. If agent i does
interact with another agent, then the following events occur:

�a� With probability P+�i , j�, it interacts with agent j in a
facilitating �excitatory� mode; when this happens, Ki�t� is
depleted by 1 and Kj�t� is increased by 1.

�b� With probability P−�i , j�, it interacts with agent j in an
inhibitory mode; when this happens, Ki�t� is depleted by 1
and Kj�t� is also depleted by 1.

�c� With probability Q�i , j , l� agent i joins with agent j to
act upon agent l in excitatory mode, as a result of which both
Ki�t� and Kj�t� are reduced by 1, while Kl�t� is increased by
1.

Finally for any i,

di + �
j=1

n �P+�i, j� + P−�i, j� + �
l=1

n

Q�i, j,l�	 = 1, �1�

where di is the probability that agent i does not interact with
other agents and its content is depleted due to some natural
effect. If di=1, then the agent does not act on other agents at
all, for instance, if it is the end product of a series of other
interactions. In order to use a more compact notation, we
replace the rates ri and the probabilities by “weights” in the
following manner:

w+�i, j� = riP
+�i, j� , �2�

w−�i, j� = riP
−�i, j� , �3�

w�i, j,l� = riQ�i, j,l� . �4�

Note that from the above assumptions �i ,�i ,ri are the pa-
rameters of exponential distributions, and �i ,�i are the ar-
rival rates of independent Poisson processes which, respec-
tively, increase or decrease the level of the variables Ki�t�.

The dynamics of the G network can now be represented
by a system of Chapman-Kolmogorov �CK� differential and
difference equations that govern the random process K�t�
= �K1�t� , . . . ,Kn�t��, t�0. This process represents the number
of units, or the concentration, of the n different types of
agents.

Denote by k= �k1 , . . . ,n� an n-vector of non-negative inte-
gers, and let P�k , t�= P�K�t�=k� be the probability that K�t�
takes that particular value k. In order to write the CK equa-
tions, define ei to be the n vector all of whose elements are
zero except for the ith element whose value is +1. The dy-
namic behavior of the G network is then given by

dP�k,t�
dt

= �
i=1

n �P�k + ei,t���i + ridi� + �iP�k − ei,t�1�ki � 0�

− P�k,t���i + ��i + ri�1�ki � 0��

+ �
j=1

n 
�P�k + ei − ej,t�1�kj � 0��w+�i, j�

+ �P�k + ei + ej,t� + P�k + ei,t�1�kj = 0��w−�i, j�

+ �
l=1

n

P�k + ei + ej − el,t�1�kl � 0�

��w�i, j,l� + w�j,i,l���	 , �5�

where all of the terms P�y , t� on the right-hand or left-hand
side of the equation are zero if any of the elements of the
vector y are negative.

A. Exact solution

The model we have presented is a special case of the “G
network with triggered customer movement,” which we have
introduced previously in the context of queueing theory �15�.
Consider now the manner in which the system behaves in the
long run, represented by its equilibrium probability distribu-
tion P�k�=limt→� P�k , t�, and introduce the term
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qi = min�1,

�i + �
j=1

n

qjw
+�j,i� + �

j,l=1,l�j

n

qjqlw�j,l,i�

ri + �i + �
j=1

n

qjw
−�j,i� + �

j,l=1,l�j

n

qlw�l,i, j�
�6�

for i=1, . . . ,n, which represents the probability that agent i is
activated in steady state.

Theorem 1. For any subset I� �1, . . . ,n� such that qm	1
for each m� I, and I= �m1 , . . . ,m�I��,

P�Km = km� = qm
km�1 − qm� , �7�

P��Km1
, . . . ,Km�I�

� = �km1
, . . . ,km�I�

�� = �
i=1

�I�

qmi

kmi�1 − qmi
� .

�8�

The proof of this theorem, stated in a slightly different man-
ner, can be found in �15�.

Note. Consider the following behavior of a cell with re-
spect to a given single gene: On for time T1, off for time T2,
on for time T1, off for time T2, and so on indefinitely. This is
one possible example of a deterministic steady-state behav-
ior. If an observer measures this behavior at a random instant
t
T1 ,T2, the observer will fall upon either the on or the off
state and the probability that it will observe the on state is
P�ON�= T1

T1+T2 . A similar statement holds if T1 ,T2 are random
variables; writing E� � as the expectation, we would have

P�ON�=
E�T1�

E�T1�+E�T2� . In the context of the probability model in

the paper, P�k�=limt� P�k , t� provides the corresponding
quantity. P�k� does not say that the state is always the same;
it simply says that P�k� is the probability that the state we
observe in steady state �i.e., for large t� has the value k.

Notice that �6� is a system of nonlinear equations; thus we
need to determine the conditions under which these equa-
tions have a solution, and also to determine whether they
have a unique solution. Fortunately this was also proved in
�15�.

Theorem 2. The solution of �5� as provided by �6�, �8�,
and �9� exists and is unique.

B. An example

In this section we develop a simple example to illustrate
the use of the approach we have introduced. In this example,
three types of agents interact. The agents or entities �C, V, A�
interact via facilitation-excitation, inhibition, and joint facili-
tation of an agent by two others.

Agent C in isolation. In the system we consider, we would
like to observe whether the agent C is activated. When it
exists in isolation, with a replenishment rate �c and a deple-
tion rate rc, using �6� we have

P�Kc � 0� = �c =
�c

rc
. �9�

If �c	rc, while if �c�rc then P�Kc�0�=1 and agent C is
constantly activated; in particular, if rc=0 there is no natural
depletion of agent C.

The effect of agent V. If agent V is introduced into the
system at some rate �v, it has the effect of combining with C
to have a joint excitatory effect on itself �positive self-
feedback� represented by w�v ,c ,v�. Thus V depletes itself
and depletes C, but it also reactivates itself in the process, so
that it is both depleting C and maintaining its own level of
activation. We suppose that agent V is not subject to some
other natural form of removal from the medium, except
through its effect on agent C. Thus rv=w�v ,c ,v�. As a result
when V is present we now have

qc =
�c

rc + w�v,c,v�qv
=

�c

rc + �v
, �10�

qv =
�v + qvqcw�v,c,v�

w�v,c,v�
, �11�

so that

�c

rc + �v
� qc �

�c

rc + w�v,c,v�
	

�c

rc
. �12�

In particular, when rc=0, we see that the introduction of
agent V results in having

P�Kc � 0� =
�c

�c + �v
	 1, �13�

instead of P�Kc�0�=1. In fact, if �v��c, then P�Kc�0�
	0.5 which may be unacceptably low. As a result, we now
take the following step.

Introducing agent A. Now in order to limit the effect of V
we introduce an agent A which has an inhibitory effect on V
so that, still assuming that rc=0, we have

qa =
�a

w−�a,v�
, �14�

qv =
�v + qvqcw�v,c,v�

w�v,c,v� + qaw−�a,v�
, �15�

qc =
�c

qvw�v,c,v�
. �16�

Conclusion. From the above equations, if agent A is in-
troduced in sufficient concentration or at sufficient rate so
that

�a �
w�v,c,v��v

�c
�17�

then P�Kc�0�=1 and agent C remains constantly activated
despite the presence of agent V.
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C. A second example

As a second example, consider the following toy regula-
tory network �20� composed of four agents, call them
�M0 , . . . ,M3� connected cyclically so that the ith agent inhib-
its agents �i+1�mod 4 and agent �i+2�mod 4, and there are
no other dependencies. Assume that agents have just two
states �on and off�.

The timing in this simple model may be either determin-
istic, where each agent changes state in exactly unit time, or
random �e.g., exponentially distributed� of average value 1
for all agents, or each agent can have a different timing be-
havior. Thus the resulting behavior of this synchronous or
asynchronous system can be quite different depending on
what is assumed about the time between state transitions of
the agents. Another important assumption about such a net-
work concerns the state the agents will enter when they are
quiescent, i.e., when they are left to themselves. Clearly, if
the agents left to themselves all enter the 0 �off� state, then
the model has little interest since all agents will remain in
that state, assuming that they start there. On the other hand,
if we assume that they spontaneously enter the 1 or “on”
state when they are not acted upon by another agent, then
more interesting behaviors can result. Also, the meaning of
these interconnections can be interpreted in at least two dif-
ferent ways, for any i=1, . . . ,3,

Interpretation (1). Mi= ¬M�i−1�mod 4∧M�i−2�mod 4.
Interpretation (2). Both agents M�i−1�mod 4 and M�i−2�mod 4

inhibit the activation of agent Mi.
Assume now that all agents start in the same initial state,

that all state transition times are exponentially distributed
with average value 1, and that when they are quiescent �i.e.,
free of inputs from other agents� they all reset themselves to
the value 1 �“on”�. For both interpretations the probabilistic
state of all agents will be identical, and their stationary dis-
tribution q=limt→� P�Ai�t�=1� is given by the following:

Interpretation (1). Using �35� we write q= �1−q��1−q� so
that q=0.382.

Interpretation (2). Using �7� we have q= 1
1+2q so that q

=0.5.
Under interpretation �2�, the agents will all spend on the

average half of the time being “on” and the other half being
“off.” All 16 states, represented by the vector of four binary
variables, will be equally likely with probability 1 /16 in
steady state. With interpretation �1� they spend more time in
the “off” state than in the “on” state; in fact in this case the
state �0,0,0,0� is 6.854 times more likely to occur than the
state �1,1,1,1�. Thus, the manner in which the interactions
between agents are precisely defined has significant impact
on the analysis that our modeling approach can offer.

III. DEPENDENCY OF AN AGENT’S STATE ON MORE
THAN TWO OTHER AGENTS

We have seen that an agent can act on another agent via
facilitation-excitation or inhibition, or two agents can jointly
act on a third via inhibition. These relationships result in the
expression �6� where we have the following:

�i� In the numerator on the right-hand side of the expres-

sion for qi we have the excitation terms qjw
+�j , i� and

qjqlw�j , l , i�.
�ii� In the denominator on the right-hand side, we have

the inhibition terms qjw
−�j , i� and the terms qlw�l , i , j�.

Thus in �6�, although the state of an agent depends on that
of many others, we do not have expressions on the right-
hand side of the form ql1

ql2
¯qlm

, m�3 which would be
necessary if we would like to have dependencies such as “the
state of agent i depends on the joint probabilities of agents
l1 , l2 , . . . , lm.”

Therefore, we construct an extended G network that re-
sponds to this need:

�i� Consider a G network  which contains the agents
�1, . . . ,n�, and the additional agents ��a�= �a1 , . . . ,a��,
��b��b1 , . . . ,b��.

�ii� We construct another G network ̂ that contains all the
agents of , and in addition contains the “dummy agents”
specified below.

�iii� Introduce two sets of “dummy agents” A1 ,A2 , . . . ,A�

and D1 , . . . ,D� that are used as intermediaries between some
of the agents of .

�iv� a1 excites A1, �a2 ,A1� jointly excite A2 and so on.
Finally �a� ,A�−1� excite A�, and A� acts on agent l in an
excitatory manner. The related parameters are w+�a1 ,A1�,
w�a2 ,A1 ,A2�=1, until w�a� ,A�−1 ,A��=1, and finally
w+�A� , l�=1.

�v� We set �As
=�As

=0, rAs
=1 for 1�s��.

�vi� We also introduce dummy agents D1 , . . . ,D� so that
�b1� acts upon D1 in an excitatory manner with w+�b1 ,D1�
=1, �b2� acts upon D2 similarly, and so on, and b� acts upon
D� in an excitatory manner with D� with w+�b� ,D��=1.

�vii� Then each D� acts upon agent l in an inhibitory
manner with w−�D� , l�=1.

�viii� We set �Ds
=�Ds

=0, rDs
=1 for 1�s��.

Using �7�, we immediately obtain

qA1
= qa1

w+�a1,A1� ,

qAs
= qas

qAs−1
, s = 2, . . . ,s = � ,

qD1
= qb1

w+�b1,D1� ,

qDs
= qbs

qDs−1
, s = 2, . . . ,s = � , �18�

so that we have

ql = min�1,

�l + �
j=1

n

qjw
+�j,l� + w+�a1,A1��

s=1

�

qas

rl + �l + �
j=1

n

qjw
−�j,l� + w−�b1,D1��

s=1

�

qbs
� .

�19�

IV. BOOLEAN DEPENDENCIES BETWEEN AGENTS

For each G network we can also derive a “Boolean B
network” via a homomorphic mapping H as follows.
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Let Z+ be the set of non-negative integers, and let k
� �Z+�N be an N vector of non-negative integers. The map-
ping H is defined by

H:�Z+�N → �0,1�N, �20�

such that

H�k� = �h�k1�, . . . ,h�kN�� ,

where

h�ki� = 1 if ki � 0, h�ki� = 0 if ki = 0. �21�

We define the Boolean B network as the system obtained
from a given G network simply by applying the mapping H
to the G-network state vector K�t�,

B�t� = �B1�t�, . . . ,BN�t�� , �22�

where Bi�t�=h�Ki�t��, B�t�=H�K�t��.
Similarly we can define the probability distribution for the

random binary N vector P�B�t�=v� for the Boolean N vector
v= �v1 , . . . ,vN� which represents a specific value taken by
B�t�.

As a direct consequence of Theorem 1 we have the
steady-state probability distribution for the B network.

Theorem 3. The steady-state probability distribution of
B�t� is given by

P�B = v� = limt→� P�B�t� = v� = �
i=1

N

qi
vi�1 − qi��1−vi�,

�23�

where the qi are given by �6�, and obviously the ith term in
�23� is qi when vi=1 and is �1−qi� when vi=0.

Thus the B-network state is simply computed from the
G-network state. Its use will become apparent in Sec. IV, we
study logical dependencies between the agents in a regula-
tory network.

Note also from Theorem 3 that the marginal probability
distributions of the Bl also have a simple form,

P�Bi = 1� = qi, p�Bi = 0� = �1 − qi� . �24�

We can now use �19� to compute the state of an agent as
a function of the product of the activation probabilities of
other agents, using just the dummy agents As, and we have
the following direct consequence of �19�.

Theorem 4. Consider the B network B̂ which results from

the G network ̂, and from �24� let ql= P�Bl=1� be the
steady-state probability that agent l is activated in the net-

work B̂. Then using �19�, if w+�b1 ,D1�=0, w+�j , l� for all j
�A�, w−�j , l�=0 for any other agent j, with w+�A� , l�=1, and
�l=�l=rl=0, we have

ql = �
s=1

�

qas
, �25�

which may be written as

ql = P�Bl = 1� = �
s=1

�

qas
= �

s=1

�

P�Bas
= 1� ,

=P� ∧
s=1

�

Bas
= 1� . �26�

The conjunctive (CNF) and disjunctive (DNF) normal
forms are standard representations for Boolean functions.
Each of them is universal in the sense that it allows the
representation of any Boolean function. Consider a set of
binary literals Bj � �0,1� which represent the activated �1� or
inactivated �0� state of an agent, j� �1, . . . ,n�, and consider a
term Ti=Xi1∨ ¯ ∨Xin where Xij is either Bj or it is ¬Bj.

The Boolean function F : �0,1�n→ �0,1� is in DNF if it is
written as

F = ∧
i=1

m

Ti, �27�

while it is in CNF when it is written as

F = ∨
i=1

m

�i, �28�

where the �i=Xi1∧ ¯ ∧Xin with Xij being either Bj or ¬Bj,
and they too are disjoint. Clearly we can transform an ex-
pression in CNF into DNF and vice versa using the well-
known Boolean identity,

¬�X ∨ Y� = ¬ X ∨ ¬ Y .

In the following we will shall show how the expression
�19� can be used to derive the state probability for a logical
expression in CNF. Before doing so, we will introduce the
complement of an agent, and also show how the joint effect
of two agents on a third one that is available in the numerator
of �6� can be exploited to obtain a product term of the prob-
abilities associated with several agents in the right-hand side
of �6�.

A. Constructing an agent’s complement

In order to obtain the probability of a term in the expres-
sion on the right-hand side of �27�, within the G-network
model we also need a “complement” ac for any agent a so
that Bac

= ¬Ba so that limt→� P�Bca=1�=limt→� P�Ba=0�
and

qac
= P�Bac

= 1� = 1 − qa. �29�

Let �� �1, . . . ,n� be a subset of the set of agents in . We
construct a new G network � which contains all the agents
in , plus agents �c= �ac :a��� which are the complements
of the agents �. To construct the additional agents, we must
do two things:

�i� Relate the parameters and interconnections of an
agent’s complement to the original agent in  so that �29� is
satisfied, and obtain sufficient conditions concerning the
agents in the original network so that this can be accom-
plished.
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�ii� Show that the values of the stationary probabilities of
the original agents in  have not been modified in the new
network.

We will assume that the following conditions are satisfied
for the agents a��: these will be the sufficient conditions
for the existence of the G network �.

�I� ra+�a��a.
�II� For any agents j , l�a in the original G network  we

must have w�j ,a , l�=0. This implies that agent a cannot be
involved in second-order effects initiated by other agents in
the network, although it is possible that w�a , j , l��0.

�III� Finally, we require that w−�j ,a��w+�j ,a�.
Note that as a result of these three conditions we obtain

1 �

�a + �
j=1

n

w+�j,a�

ra + �a + �
j=1

n

qjw
−�j,a�

.

From �6� we have

qa =

�a + �
j=1

n

qjw
+�j,a�

ra + �a + �
j=1

n

qjw
−�j,i�

�30�

and the steady-state probability that agent a’s complement is
activated given by

1 � qac
=

ra + �a − �a + �
j=1

n

qj�w−�j,i� − w+�j,a��

ra + �a + �
j=1

n

qjw
−�j,i�

, �31�

so that for each a�� we have
�i� �ac

=ra+�a−�a.
�ii� rac

+�ac
=ra+�a which can be obtained by setting rac

=ra, �ac
=�a.

�iii� w−�j ,ac�=w−�j ,a�.
�iv� w+�j ,ac�=w−�j ,a�−w+�j ,a�.
�v� Finally we set w�j ,ac , l�=0 for any j , l

� �1, . . . ,n�����c.
Thus all the parameters of the complement agent ac are

now known since they are obtained directly from the param-
eters of a, or they are set to zero.

Of course from �30� we can also obtain the original value
qa=1−qac

.

B. Expressions in conjunctive normal form

Consider the Boolean function F : �0,1�n→ �0,1� in CNF,
written as the conjunction of disjoint terms

F = ∨
u=1

m

�u, �32�

where we have the following:

�i� A term is written as �u=Xu1∧ ¯ ∧Xu� with Xus being
either Bas

or Bacs
= ¬Bas

,
�ii� m=2� since all possible terms are being summed, and

obviously
�iii� the terms are disjoint, i.e., �u∧�v=� for u�v.
Notice that if the Bas

and Bacs
are independent Boolean

variables, which is the case when P�Bas=1�
=limt→� P�Bas

�t�=1�, then

P�F = 1� = �
u=1

m

�
s=1

�

P�Xus = 1� , �33�

and we will use the developments in Secs. IV A and III to
prove the following result.

Theorem 5. For any expression in CNF �32�, there exists a
G network with a set of agents A, which contains the agent
F, the agents �a1 , . . . ,a�� and their complements
�ac1 , . . . ,ac��, as well as dummy agents �Aus :1�u�2� ,1
�s���, such that for qF=limt→� P�BF�t�=1� is given by
�33�.

Before we detail the proof let us indicate that this result
states that, given a specified Boolean dependency between
agents of a regulatory network, one can use the G-network
model to represent these Boolean dependencies. Since the
regulatory network itself is probabilistic, these Boolean de-
pendencies will be reflected in equations about the probabili-
ties of the state of the agents, i.e., these probabilities will be
are consistent with the Boolean dependencies that have been
given.

Proof of Theorem 5. From Sec. IV A we know that

qas
=

�as
+ �

jA

w+�j,as�

ras
+ �as

+ w−�j,as�
,

qacs
=

ras
+ �as

− �as
+ �

jA

qj�w−�j,as� − w+�j,as��

ras
+ �as

+ �
jA

w−�j,as�
.

Using Sec. III, we consider the dummy agents �Aus :1�u
�2� ,1�s���, with

�i� w+�j ,F� for all j�A�, w−�j ,F�=0 for any other agent
j�F, w+�A� ,F�=1, and �F=�F=rF=0,

�ii� w+�a1 ,Au1�=1 and w+�ac1 ,Au1�=0 if Xu1=Ba1
, other-

wise if Xu1= ¬Ba1
then w+�a1 ,Au1�=0 and w+�ac1 ,Au1�=1,

for all 1�u�2�,
�iii� w+�as ,Au,s−1 ,Aus�=1 and w+�acs ,Au,s−1 ,Au,s�=0 if

Xus=Bas
, otherwise if Xus= ¬Bas

then w+�as ,Au,s−1 ,Au,s�=0
and w+�acs ,Au,s�=1, for 2�s�� and all 1�u�2�.

�iv� w+�A� ,F�=1,
�v� ras

=racs
=2�−1 because, from �33� there are exactly

2�−1 terms with either Bs or ¬Bs in the sth position,
�vi� We select �as

�0 in a manner which satisfies any
constraint we may have on the value of qas

when the agent
does not receive signals from other agents �agent “at rest”�.
For instance, if �as

=0, if we take �as
=ras

=2�−1, for the
agent at rest we will have qas

=1, while if we take �as
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=2�−2 we would have qas
=0.5 as the agent’s activation prob-

ability at rest.
�vii� w+�as , j�=w−�as , j�=0 and w+�acs , j�=w−�acs , j�=0 if

j is not a dummy agent. With these values we will have

qF = �
u=1

m

�
s��u

�

qas �
s��u

�1 − qas
� , �34�

where �u= �s :Xus=Bas
� and �u= �s :Xus= ¬Bas

�, completing
the proof. QED

Note that the expression for the state probability of an
agent whose state depends on the state of others’ according
to a Boolean function in DNF can also be similarly con-
structed.

V. SUMMARY

The model we have presented computes the probability
distribution of the concentration or quantity of all of the
agents in a network, in a general framework that includes
both logical dependencies and excitatory-inhibitory relation-
ships between agents.

Our analysis proves that the equilibrium joint probability
distribution of the activation level of the N agents in a regu-
latory network is given by the formula

p�k1, . . . ,kN� = �
i=1

N

�1 − qi�qi
ki, �35�

where ki is the value taken by the concentration or quantity
of agent i, and the qi are governed by equations of the form

qi = �
u=1

m

�
s��u

�

qas �
s��u

�1 − qas
�

+

�i + �
j=1

N

qj�w−�j,i� − w+�j,a��

ri + �i + �
j=1

N

qj�w−�j,i� + �
l=1

N

w�j,i,l�� , �36�

where the first term comes from �34�, so that both the logical
dependencies �in the first term� and the excitatory-inhibitory
dependencies �in the second term� are captured in the solu-
tion.

We can consider that a regulatory network acts as the
control system of a “biochemical nanofactory,” with the rate
of production of certain compounds being determined by the
probability that certain sets of agents are activated. Then our
analysis would enable the computation of the rate of produc-
tion of these compounds over a period of time. Thus our
approach does not replace a discrete event or Monte Carlo
simulation of a regulatory network based on the full seman-
tics of agent interactions such as �11�, but does offer a means
to evaluate and predict the behavior of the network over a
period of time which is one or two orders of magnitude
longer than the time associated with the individual biochemi-
cal reactions that are involved. The qi and Theorem 1 can
provide simple computations, as illustrated in the examples
of Secs. II B and II C, while the more detailed estimates
provided by Monte Carlo simulations need to be evaluated in
terms of statistical confidence intervals, which often require
a large number of independent simulation runs.
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